INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2015-16

Statistics - II, Supplementary Examination, June, 2016 Answer all questions Maximum Marks: 50

1. Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu_0, \sigma^2)$ where μ_0 is known and σ^2 is unknown. Consider testing at level α

$$H_0: \sigma^2 \leq \sigma_0^2$$
 versus $H_1: \sigma^2 > \sigma_0^2$,

where $\sigma_0^2 > 0$ is known.

(a) Show that the conditions required for the existence of UMP test are satisfied here.

(b) Derive UMP test of level α .

(c) Consider the test which rejects H_0 whenever $\sum_{i=1}^n (X_i - \bar{X})^2 > C$ where C > 0 is such that $\sup_{\sigma^2 \le \sigma_0^2} P(\sum_{i=1}^n (X_i - \bar{X})^2 > C) = \alpha$. Show that this test is not UMP test of level α . [10]

2. Let X_1, X_2, \ldots, X_n be a random sample from the distribution with density $f(x|\lambda) = \lambda \exp(-\lambda x), x > 0$, where $\lambda > 0$ is unknown. For testing $H_0: \lambda = 1$ versus $H_1: \lambda \neq 1$,

find the generalized likelihood ratio test at the significance level α .

[8]

3. Consider a trial which ends up in 'Success' with probability θ or 'Failure' with probability $1 - \theta$, $0 < \theta < 1$. Let X denote the number of independent trials required to obtain the first 'Success'. Let X_1, \ldots, X_n be a random sample from the distribution of X.

(a) Find the maximum likelihood estimator $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ of θ .

(b) Show that $\hat{\theta}_n$ is a consistent estimator of θ .

(c) Find the asymptotic distribution of $\hat{\theta}_n$.

[10]

4. The weekly number of fires, X, in a town has the $Poisson(\theta)$ distribution. The numbers of fires observed for five weekly periods were 0, 1, 1, 0, 0. Assume that the prior distribution on θ is

 $\pi(\theta) \propto \theta \exp(-10\theta) I_{(0,\infty)}(\theta).$

(a) Derive the posterior distribution θ given the data.

(b) Find the highest posterior density estimate of θ . Compare this with the maximum likelihood estimate of θ .

(c) Find the posterior mean and posterior standard deviation of θ . [12]

5. Consider a regular model $\{f(x|\theta), \theta \in \Theta \subseteq \mathcal{R}^k\}$. Suppose we have a random sample of size n > k, and T is the minimal sufficient statistic for θ .

(a) Show that the maximum likelihood estimator, if it exists, depends on the data through T only.

(b) Show that any Bayes estimator depends on the data through T only.

(c) Give an example where method of moments estimators of θ exist, but none of them is a functions of T. [10]